
COSC 061 - Fall 2022 - Dartmouth College

MongoDB
Basic Schema Design Patterns

RDB vs. MongoDB Design

• For Relational DB’s

• Get the application requirements

• Find the data

• Fit the data into a relational database

• Give it to the programmer to implement

RDB vs. MongoDB Design

• For MongoDB

• Get the application requirements

• Ask how the user will interact with the application

• Model the data accordingly

• Give it to the programmer to implement

A good data model

• makes it easier to manage the data

• can make queries more efficient in time, memory, and CPU usage

Which contributes to lowering overall costs of the database

Points to ponder when designing

• What does my application do?

• What data will I store

• How will users access the data

• What data will be most valuable to me? To the users?

• Is any of the data sensitive or regulated?

Questions …

Points to ponder when designing

• help you describe your tasks as well as those of the user

• help you clarify what your data looks like and the relations between data

• identify tools you or the users might need

• predict access patterns that might emerge

• identify any extra care you will need to take with the data

… the answers will

Data that is accessed together
should be stored together

MongoDB Design Rule

From MongoDB in Action, 2e, Banker et.al.

Embed when the child objects never appear outside the context of
their parent. Otherwise, store the child objects in a separate
collection.

1-to-1 vs. 1-to-few

• Simple embedding is ok for a
few, even though some
duplicate storage of an
address if someone else also
lives there.

• Embedding may provide a
slight performance advantage

• Embedding makes it harder
to access the embedded
documents

1-to-few
db.student.findOne()
{
 fname: 'Lisa',
 lname: 'Simpson',
 sId: 'x0831562',
 addresses: [{
 street: '16 Hilfiger Hall',
 city: 'Cambridge',
 state: 'MA'
 },
 {
 street: '742 Evergreen Terrace',
 city: 'Springfield',
 }
]
}

The “one” side has an array of references
(less than about 100) to the items from the
“many” side.

1-to-many
db.items.insertMany([{
 _id: ObjectId(“…aaeee0”),
 itemNo: 'FM191201',
 name: 'Nerdit Gamer Backpack',
 qty: 1,
 area: 'B427',
 rack: 4,
 bin: '702'
 },{
 _id: ObjectId(“…aaeee1”),
 itemNo: 'FM191203',
 name: 'Nerdit Gamer Pack Strap',
 qty: 1,
 area: 'B427',
 rack: 4,
 bin: '702'
 },{
 _id: ObjectId(“…aaeee2”),
 itemNo: 'FM191205',
 name: 'Nerdit Gamer Pack bottle',
 qty: 1,
 area: 'B427',
 rack: 4,
 bin: '704'
 }
])

db.orders.insertOne({
 orderNo: 91269192,
 itemList: [
 ObjectId(“…aaeee0”),
 ObjectId(“…aaeee1”),
 ObjectId(“…aaeee2”)
]
})

To get a list of the items in
the order we do a
MongoDB join into an
array in program memory.

1-to-many
// Fetch the order document
order = db.orders.findOne ({
 orderNo: 91269192
});

// Fetch the Parts that are linked to this order

orderItems = db.items.find ({
 _id: {
 $in: order.itemList
 }
 }).toArray(); // return all the elements of the
 // cursor as an array in memory

Reference the document on the
“one” side of the relationship
from the “zillion” side

1-to-zillions !
…

Turn the model upside
down and have the many
side reference the one.

Suppose your web
server sends its log
messages to a MongoDB
db.

That’s a lot of log entries
really fast!

db.webserver.insertOne({
 _id: ObjectId("59242cee60ae8a3ae6aaeee0"),
 name: 'www1.beebleford.com',
 ipAddr: '127.66.67.68'
})

db.logmsg.insertOne({
 server: ObjectId("59242cee60ae8a3ae6aaeee0"),
 time: ISODate("2022-03-13T03:22:41.382Z"),
 ipAddr: '182.77.43.137',
 cmd: "GET /~cs50/programming.css HTTP/1.1",
 codes: "200 8052",
 url: "http://www.cs.dartmouth.edu/~cs50/
programming.html",
 details: "Mozilla/5.0 (Windows NT 6.1; Win64;
x64) AppleWebKit/537.36 (KHTML, like Gecko)
Safari/537.36"
})

1-to-zillions !

To get the last 1000
log entries we can
then do something
like this ->

// find the parent ‘server’ document (assuming a
unique IP address)
server = db.webserver.findOne({
 ipAddr: '127.66.67.68'
});

// find the most recent 1000 log message
// documents linked to that web server

last1000 = db.logmsg.find({
 webserver: server._id
 })
 .sort({
 time: -1
 })
 .limit(1000)
 .toArray()

1-to-zillions !

Will Zola’s 1-to-N guidelines summary
1. Will the entities on the N side of the 1-to-N ever need to stand alone?

2. What is the cardinality of the relationship:

a. 1-to-few: Embed the N side into the one-side as long as there is no need
to access the embedded object outside of the one-side.

b. 1-to-many: Use an array of references on the one-side, to the objects on
the N side if 1-to-many OR if the N side objects ever need to stand alone.

c. 1-to-zillions: Use a reference to the one-side in the objects on the N side

Consider products in an online
catalog.

A product may be found in one
or more categories.

A categories may refer to one
or more products.

For efficiency, be sure to create
an index on the category IDs.

{ _id: ObjectId("4d6574baa6b804ea563c132a"),
 title: "Epiphytes" }

{ _id: ObjectId("4d6574baa6b804ea563c459d"),
 title: "Greenhouse flowers" }

// then a product belonging to both
categories will look like this:

{ _id: ObjectId("4d6574baa6b804ea563ca982"),
 name: "Dragon Orchid",
 category_ids: [
 ObjectId(“4d6574baa6b804ea563c132a”),
 ObjectId("4d6574baa6b804ea563c459d")
]
}
--
db.products.createIndex({category_ids: 1})

Many-to-many

Example from MongoDB in Action 2e, Banker et.al.

To find all products in the Epiphytes
category, match against the
category_id field.

To return all category documents
related to the Dragon Orchid
product, first get the list of that
product’s category IDs.

Then query the categories collection
using the $in operator.

db.products.find(
{
category_id: ObjectId(“4d6574baa6b804ea563c132a
}

)
-- - - - - - - - - - - - - - - - - - -

product = db.products.findOne(
{ _id: ObjectId(“4d6574baa6b804ea563c132a")
})

db.categories.find(
{
_id: {

$in: product[‘category_ids’]
 }

}
)

Many-to-many

Example from MongoDB in Action 2e, Banker et.al.

Materialized paths

Maintain a path in a
document by
concatenating _id's
(with ':' separators).

Useful for webpage
paths, comment or
email threads, etc.

// materializedPaths.js
{
	 _id: ObjectId("4d692b5d59e212384d95003"),
	 depth: 2,
	 path:
"4d692b5d59e212384d95001:4d692b5d59e212384d951002",
	 username: "homer",
	 body: "Now where did I put that beer ... DOH!",
	 thread_id: ObjectId("4d692b5d59e212384d95223a")
}
// use code or RegEx's to dig around in the path
db.comments.find({
 path: /^4d692b5d59e212384d95001/,
});

Activity
What would be the best design pattern for … and why?

1. Recipe collection

2. eBay products catalog

3. Library catalog

4. Patient medications record at a Pharmacy

5. License plate lookup database for State Police

6. A Pizza

7. Credit card database

8. Software bill-of-materials list

